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A dispersion relation for waves of finite amplitude in 
a tw o-str eam plasma 
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A dispersion relation is derived for plane space-charge waves of finite amplitude 
in a plasma containing two oppositely charged streams of particles. The relation 
may be expressed simply in parametric form; it can also be quite well approxi- 
mated, in two different ranges of amplitude, by expressions for the wavelength 
in terms of the maximum variation of the electrostatic potential. 

1. Introduction 
Much interest has been shown, during the past few years, in the properties of 

space-charge waves in a two-stream plasma. This is the simplest kind of plasma 
with avelocity dispersion, and yet it shows up some of the most common properties 
of plasmas in general. For example, linearized theory predicts that an oscilla- 
tion in such a plasma can be exponentially amplified when its wavelength is below 
a certain critical value, determined by the densities and the relative velocity of the 
two streams, and the masses and the charges of the particles in them (see, for 
example, Kahn 1957). Buneman (1958) has proposed that this tendency to 
instability may prohibit too rapid a flow of electrons past the ions in a plasma, 
and may thus set a limit to the current density which can be attained. However, 
it has not apparently been possible yet to verify by experiment that the predicted 
instability exists, because the spread of velocities in each plasma stream cannot 
yet be made sufficiently small (Nexsen, Cummins, Coensgen & Sherman 1960). 

An analytical expression, in parametric form, is derived in this paper for the 
dispersion relation of a two-stream plasma. The result is valid for finite amplitudes, 
but applies only to cases in which the two plasma streams are oppositely charged, 
and where neither set of particles is trapped by the wave. We shall consider only 
steady waves; however, the formulae here established can probably be used to 
study some classes of amplified space charge waves to an approximation higher 
than the linear one, and the author hopes to do this in another paper. 

It is, of course, known that the problem of the construction of a plasma wave of 
finite and constant amplitude can be reduced to that of performing a quadrature 
(see, for example, Bernstein, Greene & Kruskall957). Thus let the wave patternbe 
at rest in the chosen co-ordinate system, let the mean densities of particles in the 
streams be E?, the particle masses ml,ur, the particle charges Z,e and the particle 
energies xr (r  = 1,2,3, . ..). At a point where the electrostatic potential is V ,  the 
particle velocities will be 

u r  = 2/@Pr/m) (xr-ZreV7)) .  (1) 
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We restrict our further discussion to the case in which none of the particles are 
trapped, so that u, never vanishes or changes sign. If F, is the particle flux in the 
rth stream, the particle density there will be 

and then Poisson’s equation gives that 

provided there is overall space charge neutrality, or 

XErZr = 0. (4)  

The right-hand side of (3) is a function of V only; the first integral of this equation 
can therefore be found immediately. A further quadrature gives x as a function 
of V ,  and, on inversion, V as a function of x. Thus an expression can be found for 
the wavelength of the plasma wave; the result will then be given in terms of the 
particle fluxes F, and energies xr. From these results one can also find the values 
of E, and of the mean velocities Ti,  of the different kinds of particle, and in principle 
the dispersion relation can then be expressed in terms of them, rather than in 
terms of F, and xr, if desired. 

But the process we have desoribed involves much numerical work. In the next 
section we shall show how this may be avoided for the case of a two-stream 
plasma.* 

2. A derivation of the dispersion relation 
We begin the derivation with the help of the equations of motion and con- 

tinuity and Poisson’s equation for two oppositely charged streams of particles. 
Once again the frame of reference is chosen so that the wave pattern is stationary. 
We have : 

the equations of motion ul- = PlzleE, - (5) ax m 

the equations of continuity nlul = El%,, 

nzu2 = EzTi2; 
dE 
ax Poisson’s equation - = 4ne(n1Z,+n2Zi), 

and the condition of overall space-charge neutrality 

* Lmgrnuir (1929) has solved, by numerical integration, a problem of this kind for an 
ion-electron plasma. 
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The symbols u,,, p,, Z,, n,, x, Z,, and %, have the same meaning as they had in 9 1, 
and further E = electric field intensity. The equations are made dimensionless 
by the substitutions 

(11) 

(12) 

u, = u,/?l,, 
1 + 8, = nJE,., 

x = kx, (14) 

ksins coss 
4nE, Z, e &'= E ;  

in virtue of the condition of overall space charge neutrality (lo), the relation (15) 
is equivalent to 

Finally, one can assume without loss of generality that 2, is positive and that 

(18) 
tan2€ 2 1, so that 

Equations (5) to (10) are then equivalent to 

in < E < in. 

and 

dU1 U ~ = &'tans, dX 

a 2  u - - -&cot€, 'dX - 
U1(l+S,) = 1, 
U2(l+S2) = 1, 

(1 - A) sin cos e. dx = u, u2 
It follows from (19) and (20) that 

UZ, cot E + U; tan E = constant = A2, say. (24) 

U, = A cos q5 tans E ( 2 5 )  

and U, = A sin q5 cot* E .  ( 26 )  

Hence U, and U2 can be expressed in the form 

We have restricted the discussion to the case in which no particles are trapped, 
so that all the particles in a given stream move in the same direction at all times. 
The dimensionless variables U, = u,/Z, are therefore always positive, and it 
follows from relations (25) and (26) that 0 < q5 < in, if A is positive. With the 
aid of (25) and (26), equations (19) and (20) both reduce to 

(27) -A2sin$cosq5- dq5 = &. 
ax 
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With the substitution dX = K sin 4 cos q5 dr  

- 8. A2 dq5 this equation becomes -__ - 
K d7 

With the aid of (25), (26) and (28), equation (23) becomes 

d b  K 
- = - sine cos €(sin 4 cot+ e - cos 4 tan+€) 
d r  A 

K 
= - (sin E cos E)* sin (# - e) .  

A 

From (29) and (30) it follows that 

Let 

then 

A3 $4 
+in e cos e)+ dr2 

-+sin(#-€) = 0. 

AQ 
(sin E cos e)* ' 

K =  

---+sin($-e) d24 = 0. 
a72 

This equation has the first integral 

= [2{cos (q5 - E )  - 00s a}],, d r  (34) 

where a is an arbitrary angle. Values of 4 therefore lie in the range (e - a, e + a). 
Since cos q5 must not change sign, the range of permissible values of a is limited by 
a+e < in, or 

But our variables were chosen so that &r < E < +, and so 
(35) 

a < in. (36) 

a < &l-e. 

The condition that sin$ shall not change sign is given by E-a 2 0, and this 
always holds, since e exceeds and a is less than f;.. 

Now dq5ldr vanishes at 4 = e - a and q5 = E + a. The expression on the right- 
hand side of (34) can be positive or negative; it follows that q5 is periodic in r, and 
therefore also in X .  In  dimensionless units the wavelength of the oscillation 
described by these equations becomes 

$=c+a 
A = 2 ['"'OLdX = 2~ [ sinq5cosq5dr 

J #=€-a J #=€-a 

sin q5 cos q5 dq5 s €-a [ ~ { C O S  (9 - E )  - cos a}]+ 
= 2 ~ Q ( s i n  e cos E ) - )  

= 24AQ sin-4 2s a sinZ(@+e)d$ s -~{z(cos@-cos~)}* 
a cos2$d$ s 0 (cos @ - C O S T +  

= 2SA8 sin2 2e 

= 247rAt sin8 2e12(a). 
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In (37), and from now on, we define 

A subsidiary condition to be satisfied is that the space average of S, shall vanish 

a cos@d@ s 0 (cos @ - cos a)$ 
= 2$A*(sin E cos e)f 

= 2hrA*sini 2sII(a). 
Comparison of (37) and (40) now shows that the expression for A in terms of a is 

A = 2* sin4 2e 11(a)/12(a). 

Equation (37) then gives A = 27rIf(a)/It(a). (42) 
(41) 

The total variation of electrostatic potential in the wave is, in dimensionless 
units, 

and by equation (29) 
$=€+a 

$=€-a 
&ax = -A= 

€+a 
= -A2 

s 
by virtue of relation (28). Hence 

A V  = *A2{cos 2 ( ~  - a)  - cos 2 ( ~  + a)} 

= &A2 sin 2.5 sin 201 = 

with the aid of (41). 

(43) 

(44) 

(45) 

Equations (42) and (45) express, in terms of the parameter al the relation 
between the wavelength A and the maximum variation A V  of the potential. 

Another quantity of interest is the space average ( q)sp of the particle velocities 
in the rth stream. This will be needed in later discussions of the stability of 
different kinds of plasma waves. For the particles in the first stream we have, in 
dimensionless units, that 
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With the usual substitution q5 = @+ e, with formulae (41) and (42) for A and A ,  
and after some reductions, one finds that (46) becomes 

3. Discussion of formulae and some numerical results 
We first consider the results predicted in the limit A V  + 0. This has two possible 

physical meanings, for it follows from formulae (14) and (16) that, in terms of the 
physical variables, k2sine coseAV 

A V  = 4nE1 2, e (49) 

Therefore the limit may imply that A V --f 0, so that the variation of the physical 
potential is small, and the properties of the wave can be discussed by means of the 
linearized equations. Alternatively the limit may imply that cos e -+ 0, so that 
tans -+ 00, and by relation (17), that 

Pz 1 %  I I-; u +o. (50)  

(The possibility that sine tends to zero is excluded, because e must exceed in.) 
The physical meaning of (50) is that the particles in the second stream either have 
a large mass m/p,, or a small specific charge Z,e, or a high mean velocity Uz relative 
to the wave pattern. I n  any of these cases their motion is only slightly disturbed 
by the electrostatic field of the plasma wave; the second stream therefore essen- 
tially acts as a neutralizing background charge to an oscillation, possibly one of 
finite amplitude, which is taking place in the first stream. 

It is readily shown that A V  and a tend to  zero together, since, for small a, 

for all values of r ,  and it follows from (45) that then 

A V  + sin2a + 2a. (52) 
Relations (42) and (51) show that, in this limit 

A = 2n. 

The wavelength of such oscillations, expressed in physical units, is 

2n A = -  
k '  

(53) 

(54) 

with Ic given by (13). Our result therefore agrees with that of linearized theory in 
the case A V  -+ 0. Our prediction, in the case ,u21Z21@ -+ 0, is the same as in (54), 
with k now given by 
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Here the wavelength of the oscillation is independent of the amplitude, given 
the nature and density of the particles in the first stream, and their mean speed 
relative to the wave pattern. This prediction agrees with the results found by 
Polovin ( 1956) in his note on exact non-linear plasma oscillations of a single stream 
of particles-Polovin actually shows that, viewed from a frame of reference in 
which the plasma has no mean velocity, the frequency of the oscillation is inde- 
pendent of its amplitude. Now in dimensionless units this frequency is 2?r/R; our 
result is therefore equivalent to Polovin’s. 

I I I 1 
)O 1.05 1.10 1.15 1.20 

A/2n 

FIGURE 1. A plot of A V  against h/2r. 

In  a general case, with given values for pr, Z,, Tir and U,, the wavelength is an 
increasing function of a, and therefore of the potential variation A V .  The relation 
between A/277 and A V  is readily found from equations (42) and (45); the functions 
I,(a) and IJa) are expressible in terms of complete elliptic integrals of the first 
and second kind (see $290, Byrd & Friedman 1954). In  the present case, with 
a restricted to the range (0, in), the I, functions may also be expressed, to better 
than one per cent accuracy, in terms of elementary functions, and this is done in 
the appendix. 

The table below gives some representative values of A/277 in terms of A V ,  and 
figure 1 shows graphically how the two quantities are related. It will be seen 
that, for values of A V  larger than about 0-7, the dispersion relation is very well 
approximated by A 

- = 1 + 0*0654(AV - 0.400). 
2?r 

For smaller values of A V ,  and therefore of a, one can see, from the formulae in 
the appendix, that 

Il(a) = 1 - 3a2/16 and 12(a) = 1 - 15a2/16, (57) 

so that 
3a2 

2 I+- .  
A 
277 * 16 
_ -  
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In this range 

and so (59) 

It follows from (58) and (59) that the approximate dispersion relation for small 
A V ,  is 

A table of selected values of the dimensionless wavelength A/2n in terms of the dimen- 
sionless potential variation AV". The maximum possible value of AV" in a double 
stream i s  3.284 if there are to be no trapped particles. 

AV- 0.694 1.089 1-498 1.983 2.589 3.284 
h f 2n 1.020 1.043 1.073 1.104 1.144 1.188 

Appendix : Elementary expressions for Ir(a) 

worked out as follows. 
Formulae for ~ ( C X ) ,  correct to better than 1 yo in the range 0 < a < in, can be 

For integral values of r ,  cos 7$ can be expressed as a polynomial in terms of cos $, 
say cosr$ = FT(cos$). Let 

cos $ = 1 - 2 sin2 Qa sin2 8, 

cos $ - cos a = 2 sin2 Qa cos2 8, 

sin + = 2 sin &a sin 8( 1 - sin2 Qa sin2 e)*, 

(62) 

(63) 

(64) 

then 8 = 0 when $ = 0, and 8 = QT when $ = a. Further 

and 

Thus 

2 sin Qa cos 8 d8 
( 1 - sin2 +a sin2 814 ' 

d$ = 

2 4. F,( 1 - 2 sin2 +a sin2 6 )  de. 

In the present application a < an, and therefore 

sin2$asin28 < i (2 -42 )  .i- 0-147, 

for all possible 8. In writing 

(1 - sin2 Qa sin2 8)-* = 1 + Q sin2 l a  sin2 8 

8 sin4 Qa < 0.0081. 

(67) 

we thus make an error smaller than 

(68) 

Thus the integrand in (66) can be well approximated by a polynomial in sin28; 
when this is done, the integration is straightforward. 
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After some reductions the following expressions are found for .&(a), Il(a), 12(a) 
and 13(01): 

Io(ol) + (9-cosa)/8, (69) 
I1(a) + (17 + 18 cos - 3 C O S ~  4 / 3 2 ,  (70) 
12(a) + (- ~ ~ + ~ ~ c o s c x + ~ ~ c o s ~ ~ - ~ c o s ~ ~ z ) / ~ ~ ,  (71) 
13(a) + ( - 39 - 116 cos a+ 138 C O S ~  a + 180 C O S ~ ~  - 35 c0s401)/128. (72) 
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